Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Proc Natl Acad Sci U S A ; 117(45): 27820-27824, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-889321

ABSTRACT

From the famous 1918 H1N1 influenza to the present COVID-19 pandemic, the need for improved viral detection techniques is all too apparent. The aim of the present paper is to show that identification of individual virus particles in clinical sample materials quickly and reliably is near at hand. First of all, our team has developed techniques for identification of virions based on a modular atomic force microscopy (AFM). Furthermore, femtosecond adaptive spectroscopic techniques with enhanced resolution via coherent anti-Stokes Raman scattering (FASTER CARS) using tip-enhanced techniques markedly improves the sensitivity [M. O. Scully, et al, Proc. Natl. Acad. Sci. U.S.A. 99, 10994-11001 (2002)].


Subject(s)
Microscopy, Atomic Force/methods , SARS-CoV-2/ultrastructure , Spectrum Analysis, Raman/methods , Lasers/standards , Limit of Detection , Microscopy, Atomic Force/instrumentation , Spectrum Analysis, Raman/instrumentation , Time , Virion/ultrastructure
2.
Appl Phys Lett ; 117(12): 120601, 2020 Sep 21.
Article in English | MEDLINE | ID: covidwho-814003

ABSTRACT

Lateral flow assay (LFA) has long been used as a biomarker detection technique. It has advantages such as low cost, rapid readout, portability, and ease of use. However, its qualitative readout process and lack of sensitivity are limiting factors. We report a photon-counting approach to accurately quantify LFAs while enhancing sensitivity. In particular, we demonstrate that the density of SARS-CoV-2 antibodies can be quantified and measured with an enhanced sensitivity using this simple laser optical analysis.

SELECTION OF CITATIONS
SEARCH DETAIL